Solutions to Selected Problems
Guide to Internet Cryptography

Companion Material

February 7, 2026

Preface

This document provides solutions to selected problems from the book Guide to Internet Cryp-
tography: Security Protocols and Real-World Attack Implications. The material is intended for
educational use in courses and self-study.

Book website: https://link.springer.com/book/10.1007/978-3-031-19439-9

1 Chapter 5: Point-to-Point Security

Problem 5.1 PPTPv1: Dictionary Attack

Suppose all PPTP clients use randomly generated strong passwords from the character set
ascii-32-65-123-4. Can you calculate the size of a complete dictionary for an attack?

Solution

| '

The definition of the set ascii-32-65-123-4 can be found at http://
project-rainbowcrack.com/charset.txt. It includes all the 95 characters avail-
able on a standard US keyboard, minus the lowercase characters. Subtracting the 26
lowecase characters from 95, this gives 69 characters. Choosing one character from this
set randomly, for each of the 7 positions, results in

697 ~ 7.4 - 102

possible words in the dictionary. This dictionary can be used on the left and the right
DES computation.

| '

Problem 5.2 PPTPv1l: Rainbow Tables

Is there a difference in using weak or strong passwords when considering rainbow table-
based attacks? Why are rainbow tables so efficient in calculating LMH passwords?

| r
\

Solution

No, there is NO difference between weak and strong passwords against rain-
bow table attacks — at least not in the traditional sense of “weak” vs “strong.”
Rainbow tables are pre-computed hash chains. If a password is in the rainbow table
(regardless of strength), it will be cracked instantly. If it is not in the table, it won’t be
cracked at all.

https://link.springer.com/book/10.1007/978-3-031-19439-9
http://project-rainbowcrack.com/charset.txt
http://project-rainbowcrack.com/charset.txt

What matters for rainbow tables:
e Password length — longer passwords require exponentially larger tables
e Character set size — larger charset = larger tables needed

e Whether the password was included in the pre-computation

A “weak” password like Password123! and a “strong” random password like xK9#mQ2$pL7@
are equally vulnerable if both are in the rainbow table, and equally safe if neither is in the
table.

Defense against rainbow tables:

Salting — This is the standard defense. Each password gets a unique random salt, making
pre-computed tables useless since you would need different tables for each salt value.
Modern Comparison

This is why modern systems use salted hashes (berypt, scrypt, Argon2) with key stretching
— they make rainbow tables completely impractical regardless of password strength.

Problem 5.3 MS-CHAPv1: DES as a one-way function

A significant problem in the construction of the LMH response is the difference between
the size of the DES keys (7 bytes) and the size of the DES output (8 bytes). Would it
make sense to exchange the roles of the challenge and the LMH hash value?

Short Answer: No, this would NOT work and would be even worse.

Security Degradation

If we used: Response = DESchalienge (LMH)
Problems:

e The challenge is sent in plaintext over the network
e The attacker knows the DES key (challenge) completely

e The attacker knows the DES output (response)

This becomes a known-key attack: given key K and ciphertext C, find plaintext
P

The attacker could directly compute: LMH = DESaﬁaHenge(Response)

Result: Instant recovery of the LM hash without any brute-force!

Problem 5.4 MS-CHAPv2: Cryptographic Primitives

In MS-CHAPv2, three cryptographic primitives are used: DES, MD4, and SHA-1. Without
extending this set of primitives, and thus without requiring to write new code for new
cryptographic primitives: Can you design a secure challenge-and-response protocol?

Just use a mutual authentication protocol (Figure 4.6) with HMAC-SHA1 as the HMAC
function. Please note that although collission atatcks on SHA-1 are feasible, it was shown
that the HMAC construdtion remains secure (Reference 5 in section 3). To derive a key

for subsequent encryption, a symmetric key agreement protocol (Figure 4.7) ca be used,
again with HMAC-SHA1 as a buliding block for the PRF.

	Chapter 5: Point-to-Point Security

