Solutions to Selected Problems
Guide to Internet Cryptography

Companion Material

February 6, 2026

Preface

This document provides solutions to selected problems from the book Guide to Internet Cryp-
tography: Security Protocols and Real-World Attack Implications. The material is intended for
educational use in courses and self-study.

Book website: https://link.springer.com/book/10.1007/978-3-031-19439-9

1 Chapter 4: Introduction - Cryptographic Protocols

Problem 4.1 Passwords: Salt

When a salt is used for hashing, wouldn’t it be better to keep the salt secret? Hint: As
described in this chapter, an individual salt is used for each user.

No, keeping the salt secret does not provide a meaningful security benefit.

A salt is not intended to be a secret value; its purpose is to ensure that identical passwords
result in different hash values and to prevent the use of precomputed attacks such as
rainbow tables. Since an individual salt is used for each user, an attacker must attack
each password hash separately, even if multiple users share the same password.

Keeping the salt secret does not significantly increase security because, if an attacker gains
access to the password database, they will typically also gain access to the salts. The
security of password hashing should therefore not rely on the secrecy of the salt, but on
the computational cost of the hashing function (e.g., using slow, adaptive hash functions
such as bcrypt, scrypt, or Argon2).

Relying on a secret salt would violate Kerckhoffs’ principle, which states that a system
should remain secure even if everything about the system, except the secret key, is public.
In password hashing, the password itself is the only secret; the salt can safely be stored
alongside the hash.

Problem 4.2 Passwords: Rainbow Tables

| r

Your fellow student asks: "Why don’t we use a single chain in a rainbow table? This would
save storage since we only have to store the first password and the last hash value." Is she
right?



https://link.springer.com/book/10.1007/978-3-031-19439-9

No, using a single chain in a rainbow table would not be practical or effective.

Rainbow tables rely on many chains to cover a large portion of the password space. Each
chain represents a sequence of alternating hash and reduction functions. If only a single
chain were used, it would cover only a very small subset of all possible passwords, making
the probability of successfully reversing a given hash extremely low.

Additionally, long single chains suffer heavily from collisions and merges. When two chains
reach the same intermediate value, they merge and follow the same path thereafter. In
a single long chain, this would drastically reduce coverage, since many possible starting
passwords would map to the same chain segments, wasting computation and offering no
additional benefit.

Using many shorter chains mitigates this problem: merges only affect small portions of the
table, and overall coverage of the password space is much higher. Although storing more
chains requires more storage, it is a necessary trade-off to make rainbow tables effective.
Therefore, while a single chain would indeed save storage, it would render the rainbow
table largely useless in practice.

Problem 4.3 Authentication: OTP

If the internal clocks of A and B may differ up to 25s, and if the round-trip-time of the
network is 12s: Is it enough to check only two MAC values in Figure 4.3 to avoid False
Negatives?

No, checking only two MAC values is not sufficient to avoid false negatives.
In RFC 6238 (TOTP), the MAC is computed over a time counter

t—1Tph
T =
=

where X is the time step (typically 30s). To tolerate clock drift and network delay, the
verifier must accept MACs computed for multiple adjacent time steps.

Here, the clocks of A and B may differ by up to 25s, and the round-trip time of the
network is 12s, implying a one-way delay of up to 6s. In the worst case, the total time
offset between the sender’s MAC computation and the verifier’s check is therefore

258 + 6s = 31s.

Since this exceeds a single time step of 30s, the MAC generated by A may correspond
to a time counter that differs by more than +1 step from the verifier’s current counter.
Checking only two MAC values (typically the current and one adjacent time step) may
therefore reject a valid MAC.

To avoid false negatives, the verifier must check a larger window of time steps (e.g., at
least +2 steps), ensuring that all possible valid MACs within the maximum clock skew
and network delay are accepted.

Problem 4.4 Authentication: Challenge-and-Response

Consider the following Challenge-and-Response variant: In Figure 4.4, B sends ¢ =
ENC}, ,(chall) and checks if res = chall. Compare the two variants assuming that B
uses weak randomness to generate chall.




We compare the original challenge-response variant (where B sends chall in the clear)
with the modified variant in which

¢ = ENCy, ,(chall)

is sent and B checks whether res = chall.
Assume that B uses weak randomness to generate chall.

Original variant (unencrypted challenge). If chall is sent in the clear and drawn
from a small or predictable space, an attacker can:

e predict future challenges, or

e record previous (chall,res) pairs and replay a valid response if a recorded challenge
is asked again by B.

Thus, weak randomness enhances the probability for successful replay attacks. But a
replay attack is only possible when the response (the encryption or MAC od the challenge
under the given key) was previously recorded. So the success probability is very low at
the beginning of the use of this specific key, and increases only lienearly with the lifetime
of the key.

Encrypted-challenge variant. In the modified scheme, the challenge is encrypted
under the shared secret key kap. A passive attacker nevertheless learns chall, but that’s
not important.

As a result:

e an attacker can start impersonification attacks without recording an encryption
dictionary,

e by simply sampling a random challenge chall’ and sending it back to B.

Conclusion. The encrypted-challenge variant is strictly weaker when B uses weak
randomness. While both variants rely on a secret key, the variantcritically depends
on the unpredictability of chall, whereas the original version additionally requires an
encryption/MAC disctionary.

Problem 4.5 Key exchange

Suppose the private key of party B was leaked to an adversary who did record all previously
exchanged messages between A and B. Which methods described in section 4.3 will protect
the confidentiality of the exchanged data even in this scenario?

\. J

This question asks which mechanisms provide confidentiality after key compromise, i.e.
forward secrecy.
Assume that an adversary has:

e recorded all past communication between A and B, and

e later obtains the long-term private key of B.




We analyze each method.

Diffie-Hellman Key Exchange (DHKE). If DHKE is used with ephemeral private
values (DHE or ECDHE), the session key is derived from temporary secrets that are erased
after the session. Even if B’s long-term private key is later compromised, past session keys
cannot be recovered.

= DHKE provides forward secrecy and protects past confidentiality.

RSA Encryption. In RSA encryption, the session key (or plaintext) is encrypted
directly using B’s public key. If the corresponding private key is later leaked, the adversary
can decrypt all previously recorded ciphertexts.

= RSA encryption does not provide forward secrecy.

ElGamal KEM. ElGamal KEM derives a session key using fresh randomness for each
encapsulation. B recovers this shared secret from the ciphertext with the help of his
private key. If B’s private key is later compromised, an attacker can thus derive all shared
secrets from the recorded ciphertexts.

= ElGamal KEM doen not provide forward secrecy.

Conclusion. The method that protect the confidentiality of past communication after

leakage of B’s private key is:
DHKE

while RSA encryption and ElGamal KEM do not.

Problem 4.6 Authenticated key exchange

Please explain why the signed Diffie-Hellman protocol from Figure 4.8 does not use any
variant of challenge-and-response (or certificate/verify). Suppose the ephemeral value a
has been leaked to an adversary. Can she then impersonate A? To which other parties?

Since digital signatures are used, the correct comparison would be with the certificate/verify
protocol. In this protocol, the digital signatures cover data provided by the other party:
The signature of A covers the challenge chosen by B. In the signed Diffie-Hellman protocol,
the digital signature of A only covers a value chosen by A, and similarly for B.

So it the ephemeral value a of A is leaked, an attacker can impersonate A by always
replaying (a, 04), without knowing the long-lived private key of A.

Problem 4.7 Authenticated key exchange

Can you find the following basic protocols in the complex TLS handshake depicted in
Figure 10.147 (a) DHKE (b) Certificate/Verify (c¢) Challenge-and-Response.




(a) DHKE is contained in SKE and CKE.

(b) Certificate/Verify is contained CH and SKE (the value r¢ is included in the signature
contained in SKE), and optionally in SH and CV (the value rg is contained in the transcript
of the protocol, and this transcript is signed; the signature is included in CV).

(c) Challenge-and-Response is contained in CH and F'INg, and in SH and FIN¢. In both
cases, a challenge r¢ (rg, resp.) is contained in CH (SH, resp.), and this challenge is input
to a MAC function together with the rest of the transcript, under the master secret as a
key. These MACs FINg (FIN¢, resp.) are included in the two Finished messages.

Problem 4.8 Formal models

How would you model a governmental agency which has control over several network
nodes and may request long-lived keys through court orders?

| r
\

Solution

I would provide my formal model attacker with more capabilities; if my protocol is secure
against this stronger attacker, it will also be secure against the (weaker) government
agency.

In particular, I would model that the formal attacker controls all of the Internet, not only
some nodes. And I would model that the formal attacker can request long-lived keys from
any protocol party.

This trivially enables the adversary to learn some secret messages, or to forge some MACs
or signatures. The same trivially holds for the government agency: If the agency learns the
private key of party B, the agency can impersonate B in the future, and maybe read old
or new messages. If only such trivial attacks are possible, I woul still believe my system is
as secure as it can be.




	Chapter 4: Introduction - Cryptographic Protocols

