Solutions for Chapter 2 — Introduction:
Confidentiality

June 15, 2023

Problems

Problem 2.1 Caesar Cipher
Why is the Caesar cipher a symmetric encryption algorithm? Please describe
the algorithm and the key, and give the cipher’s block length.

The Caesar cipher is symmetric because sender and recipient do need to
know the same information — the number of positions the characters of the
alphabet must be shifted. The algorithm is replacing a character m; by another
character ¢; which is located k positions after m; according to the order of the
alphabet, with ’a’ following ’z’ to make it cyclic. If the characters are presented
by one byte, the block length ist 8 bits. The effective key length is less than 5
bits, since the key k can only have 26 different values.

Problem 2.2 Block Ciphers
Is there a block cipher where the key length equals the block length?

Yes, AES-128.

Problem 2.3 DES

A friend of yours comes up with a brilliant idea to increase the key length of
3DES — he proposes 5DES, where he uses five DES keys (k1, ko, k3, kq, k5) to
encrypt a message block m; as follows:

¢; < Ency, (Decy, (Ency, (Decy, (Encg, (m4)))))

This construction uses 5-56 = 280 random bytes, so he claims that the security
of 5DES is better than AES-256. Can you describe a more efficient attack on
the 5DES key in a known-plaintext scenario?

Similar to 3DES, there is a meet-in-the-middle attack to retrieve the 280
bits of the key with complexity 21%: Given a plaintext /ciphertext pair (m;, ¢;),

e encrypt m; three-fifths of the way using all 2'8 possible values of K =
(k1, ko, k3): xx < Ency, (Deck, (Ency, (m;)))

o decrypt ¢; two-fifths of the way with all 212 possible values of K’ =
(ka,ks): 2 Encg,(Decg,(c;))

e store the pairs (zx,K) and (zx/, K’) and sort them based on the first
entry.

The pairs (K, K') where 2x = x are potential candidates for the 5DES key,
and can be tested with other plaintext/ciphertext blocks.

Problem 2.4 Block Cipher Modes

Please have a closer look at the CFB mode in Figure 2.5. In which aspects is
this mode comparable to a stream cipher, and what is different? (Hint: What
happens to the plaintext if you invert a single bit in c1?)

In CFB mode, a keystream is generated blockwise by encrypting the previous
ciphertext block. Encryption of plaintext is done, as with stream ciphers, by
computing the bitwise XOR of the plaintext and the keystream. Thus CFB
mode is malleable: By flipping a bit in ¢;, the same bit in m; is flipped. However,
this will ‘destroy’ the complete plaintext block ;4.

Another similarity is that you do not need any padding: The last ciphertext
block may by smaller than the block length.

Problem 2.5 Stream Ciphers

Suppose you want to encrypt UDP traffic with a stream cipher. What addi-
tional information will you have to transmit in an unencrypted header? (Hint:
Consider the effect of packet loss on the keystream.)

A stream cipher, once initialized with the secret key, will produce a contin-
uous keystream. To compensate the possible packet loss in UDP, each packet
would have to contain the starting position in this keystream which was used
for XORing the contents of the packet. As an alternative approach, the stream
cipher could be initialized afresh for each UDP packet. In this case a counter or
a nonce must be used for initialization to modify the contents of the keystream,
and this value must be transmitted with the UDP packet. For decryption, the
receiver would have to store all ‘unused’ bits of the keystream along with their
positions, or he would have to re-initialized the stream cipher and fast forward’
it to the position needed. Since this is difficult to implement, stream ciphers
are typically disallowed for UDP traffic, with the exception of AEAD ciphers
like ChaCha20-Poly1305.

Problem 2.6 RSA-PKCS#1

Your plaintext is 30 kB in size, i.e. 30 -1024 byte. How long is your cipher-
text if you encrypt the whole plaintext with RSA-PKCS#1 and a 2048-bit RSA
modulus?

2048 bit are 256 byte. So there will be many RSA-PKCS+#1 ciphertexts of
length 256 byte. PKCS#1 encryption encoding requires 2 byte for the prefix,
8 randomly chose byte for the padding, and 1 zero byte as a delimiter. So

each RSA-ciphertext can contain at most 256 — 11 = 245 byte. There are
30 - 1024 = 30, 720 byte plaintext to encrypt. 125 - 245 = 30, 625, so we can use
125 PKCS#1 encoded packets with the maximum plaintext payload, and an
additional PKCS#1 packet containing the remaining 95 byte — this last packet
will then contain 256 — 3 — 95 = 158 random padding byte. Altogether this
purely RSA-PKCS#1 encrypted ciphertext will be 126-256 = 32, 256 byte long,
or 31.5 kB.

Encrypting and decrypting a whole plaintext with RSA-PKCS#1 is very
slow, therefore this method is not used in practice. Instead, hybrid encryption
is used.

Problem 2.7 CPA Attacks 1

A Bitcoin trading platform uses a “military grade” textbook RSA encryption
scheme, with an RSA modulus of length 65,536 bits, to accept trading requests
where only the Bitcoin amount is encrypted. Trading requests are encoded in the
most significant bytes, with a leading zero byte to guarantee correct decryption.

How can you break the confidentiality of the most common trading requests,
which range from BTC 0.0002 to BTC 0.02¢

You can use a chosen plaintext attack on this encryption scheme. There are
only 199 different values in this range. You can encode all of them with the
given simple deterministic encoding, and encrypt all 199 encodings. You then
store each value together with the ciphertext in a decryption dictionary. By
looking up an intercepted ciphertext in this dictionary, you get the plaintext.

Problem 2.8 CPA Attacks 2

Suppose you have a black-boxr CPA oracle for 8DES in ECB mode. This ora-
cle accepts single plaintext blocks of 64 bits and outputs the ciphertexts of these
blocks encrypted under an unknown key. How many requests would it take to
compute a complete decryption dictionary for an unknown ciphertext ¢ of ar-
bitrary length, assuming that the plaintext of ¢ only contains alphanumerical
ASCII characters plus the single whitespace character 0x20% (Hint: How many
different combinations of ASCII characters fit into 8 bytes?)

There are 2 - 26 alphabetical ASCII characters, 10 digits, and a white space
character. With these 63 different byte values, 63% = 248,155, 780, 267,521 <
(26)8 = 248 different plaintext blocks can be formed. So it will take 638 decryp-
tion requests to build a complete decryption dictionary.

Problem 2.9 Discrete Logarithms
Figure out how the Baby-step-Giant-step algorithm to compute discrete loga-
rithms works. Which role does the birthday paradox from statistics play here?

Let a = g* be an element of a cyclic group G of order q. For any integer
1 < m < g we may write x = 9m + j for the unknown discrete logarithm z.
So for some yet unknown pair (i,), we have ¢ = ag=. If we now choose
m = [/q], i.e., if we take the square root of ¢ and choose m as the next bigger

integer, there will roughly be equally many possible choice for i and j. We now
compute two lists of roughly m/2 elements each, and order them according to
their second entry. The first list contains all values (j, g’), and the second list
all values (i,ag~™). We then compare these lists for a matching second entry.
If we have a match, and the first entries are j and i, we can compute the discrete
logarithm as x = im + j.

The birthday paradox from statistics roughly states that if you take a random
sample of size m = [,/q] from a set with cardinality ¢, then the probability that
this sample will contain two identical values is about 1/2.

Now if we consider the computations of ¢ and ag~*™ as random walks in
G, then the joint sample has size m/2 +m/2 = m, and the probability that at
least two elements in the sample are identical is roughly 1/2.

Problem 2.10 CDH and DDH
Why is the DDH assumption stronger than the CDH assumption? Why is a
successful attack on CDH stronger than a successful attack on DDH?

The DDH assumption is stronger since it assumes more: We do not only
assume that g% cannot be computer from ¢® and ¢°, but also that we cannot
distinguish ¢%® from any other value g” in the given cyclic group. So the DDH
assumption is easier to break, since we may break any of the two assumptions:
If we can break the CDH assumption in some group G, then we also can break
the DDH assumption in this group, by just computing g%* = CDH (g%, ¢*) and
then comparing it to the third DDH value. In certain elliptic curve groups we
can break only the second assumption by evaluating a bilinear map e(g%, g°) =
e(g,9%%) = e(g,9)® which maps G x G into another group G’ (but such maps
only are known for some special groups).

A successful attack on CDH is stronger because it not only breaks CDH, but
also DDH (see above).

Problem 2.11 ElGamal KEM

Suppose you want to send an encrypted e-mail to five recipients, who all have
public keys of the form X; = h*i. Can you use the ElGamal KEM in a hybrid
encryption scheme to encrypt the message for these five recipients?

No, you can’t because for a hybrid encryption scheme, the symmetric en-
cryption key must be identical for all recipients. This cannot be achieved with
a KEM, since the resulting keys typically are different for each recipient.

Problem 2.12 Hybrid Encryption
Your plaintext is 30 kB in size, i.e. 30 - 1024 byte. You want to send this
message confidentially to five recipients, all of which have RSA public keys with
a 2048-bit modulus, in a single e-mail.

1. How long is the ciphertext in this e-mail if you encrypt the whole plaintext
with RSA-PKCS#1 for each recipient?

2. How long is the ciphertext when you use hybrid encryption and AES-128
in CBC mode?

Please assume that besides PKCS#1, no additional encoding or padding is nec-
essary.

E-mail systems may not be able to handle non-ASCII data, so binary data
(e.g., ciphertexts) is usually encoded. We omit this encoding here, which in-
creases the size of the message by roughly 1/3. We also omit the minimal
overhead caused by adding RFC 822 and MIME headers.

From Problem[2.6]we already know that encrypting a 30 kB plaintext directly
with RSA-PKCS#1 and a 2048 bit modulus results in a ciphertext of length
31.5 kB. Sending the same plaintext message to 5 different recipient requires
5 different RSA-PKCS#1 ciphertexts, so the size of the e-mail body would be
5-31.5 = 157.5 kB. If the sender keeps an encrypted copy of the e-mail plaintext
(which is always done in secure e-mail communication), there will be 6 different
ciphertexts and the size of the e-mail will be 6 - 31.5 = 189k B.

For hybrid encryption, we only need to encrypt the 128 bit AES key sep-
arately for each of the 5 recipients plus the sender, which results in 6 - 256 =
1.5 x 1024 byte. Encryption with AES-CBC only slightly changes the size: We
only need to add 16 byte for the IV and, since we need padding for a block
cipher, another 16 byte of padding. So altogether we get a hybrid ciphertext of
size 31 kB plus 544 byte: 30kB AES ciphertext + 1.5 kB RSA ciphertext 4+ 16
byte IV 4+ 16 byte AES padding.

