
Solutions for Chapter 1 – The Internet

June 7, 2023

1 Problems

Problem 1.1 Wireshark
Install Wireshark (https: // www. wireshark. org/) and have a look at your
network traffic. Which protocols from Figure 1.1 did you find? Please argue
which protocols cannot be monitored if Wireshark is executed on your client’s
device. (Hint: Look at Figure 1.2.)

Using Wireshark, you should be able to see all Internet protocols your client
is using. These protocols are the same for all transmission hops from the IP
layer upwards, but may differ in the TCP/IP link layer. If you are using WLAN
to connect to the Internet, WLAN frames will be visible in Wireshark, but no
WAN protocols that are used by your home router towards the Internet, or the
link layer protocols Internet routers use.

Problem 1.2 IPv6
According to BBC Earth Unplugged (see the Youtube Video), there are about
1,504,000,000,000,000,000,000,000, or 1.504 septillion grains of sand in the
Sahara. Could we assign an IPv6 address to each of them?

1.504 septillions roughly correspond to 1.5× 280, since 210 = 1024 ≈ 103. So
from the 2128 IPv6 addresses, we can assign more than 247 ≈ 128.000.000.000.000
IPv6 addresses to each grain of sand in the Sahara.

Problem 1.3 UDP vs. TCP
Suppose you want to stream a compressed audio file (lossless compression).
Which transport protocol is better suited here: TCP or UDP?

Real-time audio and video are typically streamed via UDP, because the loss
of single packets only minimally impacts audio/video quality. A retransmission
of lost packets via TCP would, in this case, introduce a delay of 1 Round-Trip
Time (RTT) or more, which would have a more noticeable impact.

However, when audio or video files are streamed, TCP can be used since
these streams are typically buffered on the client side. In case that compressed
audio (or video) files are transmitted, TCP must be used, since the loss of a
single packet may result in the loss of a complete compression window. (See
Section 12.5 for more details on compression.)

1

https://www.wireshark.org/

IPS,IPC,PortS,PortC, SEQ = xn+1

IPC,IPS,PortC,PortS, SEQ = yn+1, ACK = xn+1+1

Client Server x1,y1
x2,y2
x3,y3
x4,y4
....

xn,yn

t[5] ← getTime()
m[3] ← windowSize
h[24] ← Hash(t[5],IPS,IPC,PortS,PortC)
yn+1 ← t[5]m[3]h[24]

IPS,IPC,PortS,PortC, SEQ = xn+1+1, ACK = yn+1+1

t’[5]m’[3]h’[24] ← Parse(ACK-1)
reject if NotRecent(t’[5])
reject if h’[24] ≠ Hash(t’[5],IPS,IPC,PortS,PortC)

Figure 1: SYN-Cookies.

Problem 1.4 HTTPS
Enter https: // en. wikipedia. org/ wiki/ Main_ Page into your web browser
and inspect the security information. Can you determine which encryption al-
gorithm was used to retrieve the data from Wikipedia?

The exact display of this information depends on the web browser you are
using, and may be subject to change. Information of the encryption algorithm
cannot be extracted from the web site certificate – if the web browser does not
display this information, you’ll habe to use Wireshark to look into the Server-
Hello message which contains the ciphersuite to be used. For more information
on this see Chapter 10.

Problem 1.5 DoS Attacks
Have a look at RFC 4987 and try to figure out how SYN-Cookies mitigate SYN-
Flooding attacks.

With SYN-Cookies, the server doesn’t store any state when its TCP cache
is full and thus remains reachable. The basic idea is to send back a stateless
pseudorandom value (cf. Section 8.5.2 Photuris) instead of a randomly chosen
value in the second message of the TCP handshake.

The process of computing and re-computing SYN-cookies is illustrated in
Figure 1: A server whose TCP cache is full receives a TCP connection request

2

https://en.wikipedia.org/wiki/Main_Page

from a legitimate client. This client has IP address IPC and uses local port
PortC to request a TCP connection to (IPS , PortS). He sends sequence number
xn+1 over this socket.

Upon receiving this SYN message, the server performs the following tasks:

• He retrieves a local 5-bit timestamp t[5]. This value slowly changes, ap-
proximately once for the RTT value of the network.

• He encodes an approximate Maximum Sequence Size (MSS) m[3] with 3
bits. If the TCP cache weren’t full, the exact value of MSS would be
stored there.

• He computes a hash value h over t[5] and the socket (IPS , IPC , PortS , PortC).
He extracts 24 Bits from this hash value and stores them in h[24].

• He computes his sequence number yn+1 for the SYN-ACK message as the
concatenation of t[5], m[3] and h[24].

• After sending the SYN-ACK message, he erases all these values from mem-
ory.

A legitimate client will then answer with the ACK message of the TCP
handshake, which contains the values (SEQ = xn+1 +1, ACK = yn+1 +1), and
the socket information (IPS , IPC , PortS , PortC). The server will check this
ACK message as follows:

• He parses the bitstring of ACK − 1 as t′[5]m′[3]h′[24].

• He checks if t′[5] is a recent value, i.e., if this time value lies within a
configured interval before the current time.

• He computes a hash value over t′[5] and the socket (IPS , IPC , PortS , PortC).
He extracts the same 24 Bits from this hash value and compares them to
h′[24].

• If this check succeeds, he clears an entry in his TCP cache, stores SEQ,
ACK and m[3] there, and waits for incoming TCP bytestreams.

Please note that using a standard hash function without a secret value may
not be a good idea, because an attacker can retrieve the actual value of t[5]
by trying to connect to the server using a legitimate IP address. He may then
be able to compute h[24] from this value and the socket of the spoofed SYN
packet. A simple way to mitigate this is to include a secret value in the hash
computation which only the server knows.

More information on SYN-Cookies is available at http://cr.yp.to/syncookies.
html and https://en.wikipedia.org/wiki/SYN_cookies.

3

http://cr.yp.to/syncookies.html
http://cr.yp.to/syncookies.html
https://en.wikipedia.org/wiki/SYN_cookies

	Problems

