Solutions to Selected Problems
Guide to Internet Cryptography

Companion Material

February 12, 2026

Preface

This document provides solutions to selected problems from the book Guide to Internet Cryp-
tography: Security Protocols and Real-World Attack Implications. The material is intended for
educational use in courses and self-study.

Book website: https://link.springer.com/book/10.1007/978-3-031-19439-9

1 Chapter 12: Attacks on SSL and TLS

Problem 12.1 Attack target

In the following table, please indicate if the given target (HTTP session cookie, Premas-
terSecret, private key) can be retrieved with the given attack.

” Name of Attack | HTTP Session Cookie | PremasterSecret | Private Key ”

BEAST
Bleichenbacher
POODLE
Invalid Curve
Lucky13
Raccoon

Solution

| r
\

” Name of Attack | HTTP Session Cookie | PremasterSecret | Private Key ”

BEAST YES NO NO
Bleichenbacher YES YES NO
POODLE YES NO NO
Invalid Curve YES YES YES
Lucky13 YES NO NO
Raccoon YES YES NO

Problem 12.2 Attacker Models

(a) What is the difference between the web attacker and the Man-in-the-Browser models?
Is one of these models contained in the other model?

(b) A Man-in-the-Browser has access to a (partial) encryption oracle, while a Man-in-the-

https://link.springer.com/book/10.1007/978-3-031-19439-9

Middle doesn’t have this ability. Is a Man-in-the-Browser therefore stronger?

Solution

| r

(a) The web attacker model applies to all types of web applications, e.g., email, FTP
and DNS. An attacker may set up malicious servers for any of these services, and may
send messages/commands to other Internet services via the appropriate protocols. A web
attacker does not have Man-in-the-Middle privileges, and generally he is not able to spoof
IP addresses.

The Man-in-the-Browser model extends the web attacker model by the ability to run
JavaScript code in the victim’s browser. This is solely possible for general purpose web
browsers, where the victim has to load the attacker’s web page in his or her own browser.
The JavaScript is executed in the context of the attacker’s web origin, so this is not to
be confused with Cross-Site-Scripting (XSS) attacks. Nevertheless, by invoking HTTPS
URLs from the malicious webpage, the Man-in-the-Browser can trigger arbitrary many
TLS handshakes, and can send known plaintext, embedded in the URL, to the target
server. For adavnces Cross-Site Request Forgery (CSRF) attacks, Man-in-the-Browser
privileges are also needed.

(b) No, an Man-in-the-Browser is not stronger than a Man-in-the-Middle. Although the
Man-in-the-Browser can send known olaintext, he cannot read the returned answer - the
Same Origin Policy (SOP) blocks this. So both attacker models are somehow orthogonal
to each other. Sometimes, the two models are combined, e.g. in CRIME: The Man-in-the-
Browser triggers the HT'TPS requests, and the Man-in-the-Middle measures the length of
the ciphertexts sent.

| '

Problem 12.3 BEAST

For BEAST, the chosen plaintext must be inserted in the first block of a TLS record.
Which parts of the HTTP request plaintext can be controlled by a Man-in-the-Browser
attacker? Do these parts lie in the first plaintext block?

Solution

| r
\

The Man-in-the-Browser controls the path vaule of the URL called, including the query
string. The first block of the HTTPs request cannot be controlled by the BEAST attacker,
because it always contains the HTTP method string (e.g., GET or POST).

Problem 12.4 Vaudenay Padding Oracle Attack

| r

(a) Why is it essential that the encryption key k doesn’t change? Which plaintext bytes
could still be determined if the key k£ would change?

(b) Which padding is used to determine the third-last plaintext byte?

Solution

| V

(a) In the Vaudenay padding oracle attack, the attacker systematically modifies the last
unknown byte misusing the malleability of the cipher mode. This systematic procedure is
only possible if the output of the block cipher algorithm itself does not change for the last
block. But if the key k& would change, this output would change, too. If the key does

change, as it is the case with padding oracle attacks on TLS, only the last byte can be
determined probabilistically. If the plaintext doesn’t change, on average we need 128
HTTPS requests with the same plaintext to recover this byte.

(b) 03 03 03.

7

Problem 12.5 POODLE

(a) Why does POODLE only work for SSL 3.0? Can you imagine a faulty implementation
of the padding check in TLS 1.2 such that POODLE would work for this flawed
implementation?

(b) Why can’t POODLE be mitigated through a software patch?

(a) SSL 3.0 specifies that for CBC mode:

e The padding length byte must be correct
e But the padding bytes themselves can be any value, so they cannot be checked

This is the critical flaw. The MAC is computed over the plaintext before padding is added,
so if you can manipulate the ciphertext and the server only checks the padding length
(not the padding content), you can perform the POODLE attack.

TLS 1.0, 1.1, and 1.2 specify that:

e The padding length byte must be correct
e All padding bytes must equal the padding length

For example, if padding length is 5, you need: 05 05 05 05 05 05 (6 bytes total). This
prevents POODLE because the only valid padding of a full AES block is 15 times the
value 15. Any modified ciphertext block will result, with probabilty 1 — 21155;, in invalid
padding bytes, causing the server to reject the message.

Here’s an implementation of a flawed implementation:

FLAWED IMPLEMENTATION: "LAZY PADDING CHECK"

/%%
* VULNERABLE IMPLEMENTATION
* Bug: Only checks padding_length byte, not the actual padding content
*/
bool verify_padding FLAWED(uint8_t* plaintext, size_t length) {
// Read padding length from last byte
uint8_t padding length = plaintext[length - 1];

// Check if we have enough bytes
if (length < padding length + 1) {
return false;

}

// BUG: Should check all padding bytes here, but doesn’t!
// This mimics SSL 3.0 behavior in TLS 1.2

return true; // <- VULNERABLE!

WHY THIS IS VULNERABLE TO POODLE:

- Attacker can manipulate ciphertext blocks

- As long as the last byte (after decryption) looks like a valid padding_leng
the padding check passes

- The actual padding bytes are never verified

- This is exactly the SSL 3.0 vulnerability in a TLS 1.2 implementation

(b) The specific SSL 3.0 padding that enables the attack is part of the SSL 3.0 standard.
So any implementation with a different padding would no longer be standard-compliant.

Problem 12.6 CRIME

| V

(a) Use LZ77 to compress the string cybersecurity and cyberwar.

(b) Which part of the URL must be changed to include an additional character of the
HTTP session cookie in the LZ77 compression window?

| r

Solution

(a) Final LZ77 encoding

(0,0,¢), (0,0,y), (0,0,b), (0,0,e), (0,0,r),

(0,0,s), (0,0,e), (0,0,¢), (0,0,u), (0,0,x), (0,0,1), (0,0,t), (0,0,y),
(0,0,), (0,0,2), (0,0,n), (0,0,4d), (0,0,),

(17,5,w), (0,0,a), (0,0,r)

(b) One byte must be added before the comparison string, and one byte must be removed
after the comparison string, in the path vlaue of the URL.

Problem 12.7 BREACH
Why does BREACH still work when TLS data compression is disabled?

| r
\

| V

Solution

Because HTTP compression may still be enabled.

| '

Problem 12.8 SSL 2.0: Ciphersuite Rollback Attack

Suppose the attacker would only remove all strong ciphersuites from the ClientHello
message in the SSL 2.0 handshake. Would the ciphersuite rollback attack also work in
this scenario?

th,

Solution

No, it wouldn’t. In SSL 2.0, the client chooses the ciphersuite from the intersection of
his set of cipehrsuites, and the ciphersuites contained in the SH message. Since the client
does not rely on the (manipulated) CH message, but only on its own configuration, this
tattack won’t work.

| r

Problem 12.9 SSL 3.0: Version Rollback Attack

In a version rollback attack, the attacker modifies the ClientHello message. In SSL 3.0,
this message is protected by the MACs contained in ClientFinished and ServerFinished.
So why does this modification remain undetected?

| '

Solution

If ther version is rolled back to SSL 2.0, then only SSL 2.0 checks will be applied during
the handshake. And in SSL 2.0, the version number is not protected by the MACs.

| r

Problem 12.10 PKCS#1 variants

Consider the following PKCS#1 variants. Would their use prevent Bleichenbacher-like
attacks? Which problems would occur? Please calculate the probability of a random
plaintext being compliant with these variants.

(a) Use the PKCS#1 coding for digital signatures also for public-key encryption. In this
case, many static padding bytes 0xFF can be checked, and these checks would reduce the
probability of finding a PKCS-compliant ciphertext to nearly zero.

(b) Modify PKCS#1 as follows: Half of the padding bytes are chosen randomly, and half
have the value OxFF. At least 16 bytes must be padded.

(c) Use 8 bytes 0x00 as a separator between the random, non-zero padding and the message
m.

r
\

Solution

Let the RSA modulus length be k bytes. A random plaintext is uniformly distributed in
{0, 13%.
Recall:

e PKCS#1 v1.5 encryption format:
0200]|0202|| P.S]|0200]|m,
where PS consists of at least 8 non-zero random bytes.

e Bleichenbacher’s attack requires a valid/invalid padding oracle. If the probabilty for
receiving a ‘valid’ answer becomes too small (e.g., smaller than 2764 since this is an
online attack), we consider the PKCS variant secure.

(a) Use the signature padding format (0x00 0x01 FF...FF 0x00 m).
Format:
0200(/0z01|| 0z FF .. .0z F'F ||0z00|/m

£ bytes

Probability that a random plaintext is compliant:
e First byte must be 0x00: probability 278
e Second byte must be 0201: probability 278
e Fach padding byte must be OzF'F

If the padding length is ¢, the probability is

Pa — 2716 . (278)@ — 278(54’2).
For realistic key sizes (e.g. £ > 8), this probability is extremely small.

Does it prevent Bleichenbacher? Yes, because P, < 278(8+2) — 980 9-64

Additional problem: This format is deterministic (no randomness). RSA encryption
becomes deterministic and therefore insecure against chosen-plaintext attacks (no semantic
security).

(b) Half random padding, half OxFF (at least 16 padding bytes).

Suppose the padding length is ¢ > 16, with ¢/2 random non-zero bytes and ¢/2 fixed
0z F'F bytes.

Probability:

e First two bytes fixed: 2716

e Each fixed 0xFF: 278 per byte

e Each random non-zero byte: 255/256
Hence:

¢/2
p,=2716. (2—8)6/2 . <255> / .
256

: 255
Since 525 ~ 1,

P, & 271674
Again extremely small, but nonzero.
Does it prevent Bleichenbacher? Yes. Because P, < 2716416 — =80 - 9—64

(c) Use 8 bytes 0x00 as separator.

Format:
0200(/0202|| PS|| 0200 .. 0200 ||m
8 bytes
Probability:

e First byte 0200: 278
e Second byte 0x02: 278
e 8 zero bytes: (278)8 =264

Ignoring the non-zero requirement for P.S,

P, ~ 9716964 _ 980,

Does it prevent Bleichenbacher? Yes, since the probabilty for ‘valid’ answers is
small enough.

Overall Conclusion

All of these variants prevent Bleichenbacher-like attacks.

However, (a) re-introduces chosen-plaintext attacks due to the deterministic nature of the
padding. RSA encryption using this variant would no longer be CPA-secure.

The Proposed countermeasure is to use:

RSA-OAEP (provably CCA-secure)

instead of modifying PKCS#1 v1.5 heuristically.

Problem 12.11 Bleichenbacher attack

For an RSA modulus, n with |n| =1025 bits compute the number of integers in the interval
[2B,3B).

In Bleichenbacher’s setting, let the RSA modulus have bitlength

In| = 1025.

For PKCS#1 v1.5, we define

as the modulus length in bytes.

Since
1025 =8 - 128 4+ 1,
we get
k = 129 bytes.
The value B is defined as
B = 28(](:—2).

Thus,
B — 98(129-2) _ 98127 _ 91016

We are asked to compute the number of integers in the interval
[2B,3B).

The size of this interval is
3B - 2B = B.

Hence, the number of integers in the interval is

o]

Problem 12.12 Bleichenbacher attack: Signature forgery

The message to be signed is formatted to be PKCS#1 compliant and is then treated as an
RSA ciphertext. So if this ciphertext is already PKCS#1 compliant, will the decrypted
plaintext also be PKCS#1 compliant?

| r

Solution

No. First, we are talking about two completely different versions of PKCS#1 here.
Second, the ‘RSA decryption’ of the PKCS#1 (for signatures) formatted ‘ciphertext’ is a
digital RSA signature. This is just an integer modulo n and has no additional structure.

Problem 12.13 ROBOT

| r
\

Which side channels were used to implement the Bleichenbacher oracles in ROBOT?

| r
\

Solution

ROBOT (“Return Of Bleichenbacher’s Oracle Threat”, 2017) showed that many TLS
servers still provided a Bleichenbacher-style padding oracle for RSA PKCS+#1 v1.5 key
exchange.

The oracle was not implemented intentionally, but leaked through side channels. The
main side channels used were:

1. Different TLS alert messages. Some servers responded with different TLS alert
codes depending on whether:

e the RSA PKCS+#1 padding was invalid, or
e the padding was correct but later checks failed (e.g., wrong premaster secret version).

Distinguishable error messages directly revealed padding validity.

2. TCP-level behavior. Even when TLS alerts were unified, differences appeared at
the TCP layer:

e immediate connection termination vs. graceful shutdown,
e different TCP FIN/RST behavior.

These differences acted as a padding oracle.

3. Timing side channels. Some implementations performed different processing steps
depending on whether the padding check succeeded:

e early abort on padding failure,
e further processing (e.g., key derivation) if padding was valid.
This caused measurable timing differences, allowing a timing oracle.
4. Subtle protocol-state differences. In certain cases, servers continued the hand-

shake differently depending on padding correctness, leading to observable differences in
subsequent messages.

Conclusion. ROBOT exploited observable differences in:

alert messages, TCP behavior, timing, and handshake state

to reconstruct a Bleichenbacher padding oracle and perform adaptive chosen-ciphertext
attacks against RSA key exchange.

Problem 12.14 Raccoon

For which prime moduli p with 1000 < [p| < 2000 could the Raccoon attack possibly work?
Which hash function must be negotiated in TLS 1.27

To derive the MasterSecret, the PremasterSecret is used as a key in an HMAC construction.
When using prime order groups in TLS-DH, the PremasterSecret is usually much longer
than the allowed key length in the HMAC construction. Therefore, the PremasterSecret
isn’t directly used as the key, but its hash value is.

Before the PremasterSecret is hashed, at least 9 additional byte are appended to it,
containing the padding length (1 byte) and a padding which is at least 8 bytes long. This
padding is added to make the resulting bytestring a multiple of the block length of the
hash function used both in the HMAC function and to compress the PremasterSecret.
For the Raccoon attack to work, this padding should result in one hash function block less
when the leading byte of the PremasterSecret is 0 (and is therefore stripped) compared to
the situation where this leading byte is not equal 0.

Which prime moduli p with 1000 < |p| < 2000 would allow this, for the hash functions
SHA-1, SHA2-256, and SHA2-5127

The internal blocks of SHA-1 have size 160 bit; those of SHA2-256 have 256 bits; and those
of SHA2-512 have 512 bits. SHA2-224 and SHA2-384 are truncated versions of SHA2-256
and SHA2-512, resp., and therefore have the same internal block size.

For Raccon to work optimally, the bit size x of the prime number plus 9 - 8 = 72 bits from
the minimal padding must be just 1 more than a multiple of the block size:

z + 72 = 1 mod blocksize

For SHA-1 with blocksize = 160 this yields: We solve
x+T72=1 (mod 160).

Step 1: Isolate x.
x=1-72 (mod 160)

x=-T1 (mod 160)
Since

—71=160—-71 =89 (mod 160),

we get

x =89 (mod 160).

Step 2: General solution.

r =89+ 160k, k€ Z.
Step 3: Restrict to 1000 < x < 2000. We solve:

1000 < 89 + 160k < 2000.

Lower bound:

89 + 160k > 1000

160k > 911

k > 6.
Upper bound:

89 + 160k < 2000

160k < 1911

k <11.

Step 4: Compute solutions. For k =6,7,8,9,10,11:

k=6: x=1049

k=7: xz=1209
k=8: x=1369
k=9: x=1529

k=10: =z =1689
k=11: =z =1849

Final Answer

|10497 1209, 1369, 1529, 1689, 1849|

Problem 12.15 Cross-protocol attack: TLS-1.2 and TLS 1.3

(a) Why does the adversary know the discrete logarithm of the DH share in the
ServerKeyShare extension?

(b) Which of the values that are hashed-and-signed in the ServerKeyShare extension can
be chosen by the adversary, and which are chosen by the client? Which of these values
change between TLS sessions?

10

(a) Because in Figure 12.32, the MITM adversary creates the DH share contained in the
ServerKeyShare extension himself.

(b) In TLS 1.3, the server’s signature is contained in the CertificateVerify message (CV)
sent by the server. Here, the whole tanscript of the handshale up to this point is signed.
This transcrit contains static values (e.g., the list of ciphersuites and extensions sent by the
client), ephemeral values chosen by the client (especialyy r¢ and the client’s DH share),
and values chosen by the server/adversary. The ephemeral values chosen by the client
and server change between TLS sessions, and the attacker cannot influence the epemeral
values of the client.

Problem 12.16 Cross-protocol attack: DROWN

In the SSL2 handshake (Figure 11.1), in addition to the adaptively chosen RSA ciphertext
¢ in the CM K message, the adversary always has to send a MAC macc computed with
the client write key cwk. Since he cannot calculate this MAC, the handshake will always
abort, both for PKCS#1 compliant and non-compliant plaintexts. How can he nevertheless
distinguish PKCS#1 compliant and non-compliant plaintexts?

| r

Solution

As noted in the DROWN paper https://drownattack.com/drown-attack-paper.pdf,
all SSL 2.0 servers they tested responded with a SV message immediately after receiving
the CMK message. This the attacker didn’t have to prepare the CF message. This is
a deviation from Figure 11.1, and the SSL 2.0 standard is unclear about this message
ordering.

https://drownattack.com/drown-attack-paper.pdf

	Chapter 12: Attacks on SSL and TLS

